ECE 257
Linear Integrated Analog Circuits
Switched-Capacitor Circuits

Shaahin J. Ashtiani
Switched Capacitor Circuits

• Basics Operation
• Functional Operation
 ▪ Switched-Capacitor Integrator
 ▪ Discrete-Time Signal Processing
 ▪ Switched Capacitor Filters
 ▪ Sample and Hold Circuits
 ▪ Gain Stages
• Non-Ideal effects and Practical Solutions
 ▪ Analysis of Sampling Switches
 ▪ Charge injection and Clock Feed-through
 ▪ Bottom-Plate Sampling
 ▪ Effect of op-amp non-idealities
 ▪ Noise
 ▪ Correlated double-sampling
Why SC Circuits?

• SC Circuits
 ▪ Discrete-time systems

• Accurate realization of filters and gains
 ▪ Accuracy related to matching of capacitors
 ▪ No need to resistors
 ▪ Performance Independent of absolute values of C

• Highly linear
 ▪ Independent of shape of waveforms
 ▪ Only settling accuracy is important
Basic Operation: SC Resistor

- $I_{\text{avg}} = \frac{C(V_1 - V_2)}{T}$
- $R_{eq} = \frac{T}{C} = \frac{1}{fC}$
- Low-frequency approximation
Basic Switched-Capacitor Integrator

- Phase Φ1: C1 is charged up to Vin (Q=C1Vin)
- Phase Φ2: C1 charge (Q=C1Vin) is transferred into C2
- Charge transfer equation:

\[
C_2 V_{o}(nT - T/2) = C_2 V_{o}(nT - T) - C_1 V_{i}(nT - T)
\]
\[
C_2 V_{o}(n) = C_2 V_{o}(n - 1) - C_1 V_{i}(n - 1)
\]
\[
H(z) = \frac{V_{o}(n)}{V_{i}(n)} = -\frac{C_1}{C_2} \frac{z^{-1}}{1 - z^{-1}}
\]
Sensitivity to Parasitic Capacitance

- Basic SC equal resistor is sensitive to parasitics

\[Vo(n) = - \frac{C1 + C_{p1}}{C2} \frac{z^{-1}}{1 - z^{-1}} Vi(n) \]
Parasitic-Insensitive Integrator

- Non-inverting integrator
- Delayed

\[H(z) = \frac{V_o(n)}{V_i(n)} = \frac{C_1}{C_2} \frac{z^{-1}}{1 - z^{-1}} \]

\[C_2 V_o(n) = C_2 V_o(n-1) + C_1 V_i(n-1) \]
Parasitic-Insensitive Integrator: Operation

- C_{p2}: Always connected to ground
- C_{p1}: Connected to ground in $\Phi2$
Parasitic-Insensitive Integrator: Delay Free

- Inverting integrator
- Delay Free

\[H(z) = \frac{V_o(n)}{V_i(n)} = -\frac{C_1}{C2} \frac{1}{1 - z^{-1}} \] \[C_2V_o(n) = C_2V_o(n-1) - C_1V_i(n) \]
Switched Capacitor Filters

• H(s) to H(z)
 ▪ Bilinear Transform: Accurate \[s = -\frac{2 \left(1 - z^{-1}\right)}{T \left(1 + z^{-1}\right)} \]
 ▪ Impulse invariant: Simple but not accurate \[h[n] = Th_c(nT) \]
Implementing H(z) by SC Circuits

\[\frac{1}{C_A 1 - z^{-1}} \]
Example: First-Order Filter
First-Order Filter

\[H(z) = -\left(\frac{C_1 + C_2}{C_A}\right)z + \frac{C_1}{C_A} \left(1 + \frac{C_3}{C_A}\right)z - 1 \]

- **DC Gain:** \(H(1) = -\frac{C_2}{C_3} \)
- **Pole:** \(z_p = \frac{C_A}{C_A + C_3} \)
- **Zero:** \(z_z = \frac{C_1}{C_1 + C_2} \)
Design Example

• First order filter: -3dB @ 10kHz, 0 @ 50kHz, fs=100kHz, DC Gain=1
• Zero at 50kHz: zz=-1, (Negative capacitor)
• Using bilinear transform: zp=10kHz, s=2/T(z-1)/(z+1) ⇒ zp=.53327

• $H(z): H(z) = K \frac{(z+1)}{z-0.53327}$ \hspace{1cm} H(1)=1 ⇒ K=0.23337

• Assume $C_A=10\text{pf}$ ⇒
 - $C_1=4.376\text{pF}$
 - $C_2=-8.752\text{pF}$
 - $C_3=8.752\text{pF}$

• Implementing C_2: Cross-couple it in a fully differential design
Switch Sharing

- Removing redundant switched
Biquad Filter: Low-Q

- Biquad: General second-order system
- Any filter can be realized by cascading biquads and first-orders
- Low-Q and High-Q implementation
Low-Q Biquad Filter: CT Implementation
Low-Q Biquad Filter: SC Implementation

From Analog Integrated Circuit Design (Johns & Martin)
Low-Q Biquad Filter: z domain flow-graph

\[H(z) = \frac{a_2 z^2 + a_1 z + a_0}{b_2 z^2 + b_1 z + 1} \]

- \(K_3 = a_0 \)
- \(K_2 = a_2 - a_0 \)
- \(K_1 K_5 = a_0 + a_1 + a_2 \)
- \(K_6 = b_2 - 1 \)
- \(K_4 K_5 = b_1 + b_2 + 1 \)

• One degree of freedom for \(K_1, K_4 \) and \(K_5 \)
• Optimum choice for dynamic range: \(K_4 = K_5 = \sqrt{b_1 + b_2 + 1} \)
CT to SW Conversion

- Impulse invariance
- Rewrite $H(z) = -\frac{(K_2 + K_3)z^2 + (K_4K_5 - K_2 - 2K_3)z + K_3}{(1 + K_6)z^2 + (K_4K_5 - K_6 - 2)z + 1}$ to $H(z) = -\frac{K_4K_5 + K_2(z^{1/2} - z^{-1/2})z^{1/2} + K_3(z^{1/2} - z^{-1/2})^2}{K_4K_5 + K_6(z^{1/2} - z^{-1/2})z^{1/2} + (z^{1/2} - z^{-1/2})^2}$

- For $z^{-1/2}$ and $z^{1/2}$ we have:
 $$z^{1/2} = \cos\left(\frac{\omega T}{2}\right) + j\sin\left(\frac{\omega T}{2}\right)$$
 $$z^{-1/2} = \cos\left(\frac{\omega T}{2}\right) - j\sin\left(\frac{\omega T}{2}\right)$$

 - $H(j\omega)$ is:
 $$H(z) = -\frac{K_1K_5 + jK_2\sin(\omega T) + (4K_3 + 2K_2)\sin^2\left(\frac{\omega T}{2}\right)}{K_4K_5 + jK_6\sin(\omega T) + (4 + 2K_6)\sin^2\left(\frac{\omega T}{2}\right)}$$

 - For $\omega T \ll 1$
 $$H(z) = -\frac{K_1K_5 + jK_2(\omega T) + (K_3 + K_2/2)(\omega T)^2}{K_4K_5 + jK_6(\omega T) + (1 + K_6/2)(\omega T)^2}$$

 - $K_4 = K_5 = \omega_0 T$, $K_6 = \omega_0 T/Q$
- For high Q, large capacitor ratio required
Biquad Filter: High-Q

- Biquad HQ

\[H(z) = \frac{-K_3z^2 + (K_1K_5 + K_2K_5 - 2K_3)z + K_3 - K_2K_5}{z^2 + (K_4K_5 + K_5K_6 - 2)z + (1 - K_5K_6)} \]
Sample and Hold Circuits: Flip-Around

- Fast: OTA out does not change: Relaxed SR
- Feedback factor = 1
- Common-Mode Issue: Input signal CM should be equal to OTA CM
Flip-Around S&H: Fully Differential
Sample and Hold Circuits: Two-Capacitor

- OTA Settles: Slower
- Insensitive to CM difference
Gain Stage I

- Same as S&H: $G = -\frac{C_1}{C_2}$
Gain Stage II

- $G = 1 + \frac{C_1}{C_2}$
Practical Issues and Non-Idealities

- MOS Sampling
- Speed
- Linearity
- Switch bootstrapping
- Charge Injection
- Jitter
- Noise
MOS T&H: Simulation
MOS S&H: Tracking Speed & Distortion

- Simple RC model: \(V_o = V_i \left(1 - e^{\frac{-t}{\tau}} \right) \)

- \(\tau = \frac{1}{RC} \)

- \(R \approx \frac{1}{\mu L \frac{W}{L} (V_{DD} - V_I - V_I)} \)

- R is non-linear!

- \(V_o = V_i \left(1 - e^{\frac{-t}{2\tau \left(\frac{V_i}{V_{DD} - V_T} \right)}} \right) \)

- Tracked signal has harmonic distortion!
MOS S&H: Tracking Distortion

- $W=10$, $L=0.18$, $C_{in}=1pF$, $f_s=50M$, $f_{in}=1.56M$, $V_{in}=0.5V$,

Switched-Capacitor Circuits © 2007 S. J. Ashtiani
Improving Tracking Speed: T-GATE

- Not a good choice for low-voltage technologies
Improving Tracking Speed: Bootstrapping

- Improving R by increasing V_{GS}
- No terminal-to-terminal voltage exceeds V_{DD}
- Overdrive Independent of V_i
Improving Tracking Speed: Bootstrapping

* test bench for switch

Voltages (ln)

Time (ln) (TIME)

0 50n 100n 150n 200n 250n 300n 350n
Charge Injection and Clock Feed-through

- Error in sampled voltage due to charge injection and clock feed-through
- Clock feed-through
 - Independent of V_i
 \[
 \Delta V_o = \frac{C_{gd}}{C_{gd} + C_L} V_{DD}
 \]
- Charge injection
 - Depends on V_i
 - Body effect
 \[
 \Delta V_o = \beta \frac{WLC_{ox}(V_{DD} - V_i - V_T)}{C_L}
 \]
- Charge injection causes harmonic distortion
Canceling Charge Injection

• Dummy transistor
 ▪ Dummy transistor: half size

• Tgate as switch
 ▪ NMOS and PMOS have same size
Canceling Charge Injection: Fully Differential
Bottom-Plate Sampling

- Q2 turns off first \Rightarrow Q2 induces *Constant* charge in C1
- Q1 turns off later \Rightarrow Q1 does not add charge in C1
- Induced error is independent of Vin
SC Circuits with Bottom-Plate Sampling
Clock Jitter

- Jitter (Δt): Uncertainty in rising and falling of clock signal
 - Δt in the range of 1-100ps
 - $\Delta t \Rightarrow \Delta v$ in sampling
Correlated Double Sampling

- Canceling opamp offset and 1/f noise
- Store offset in C2’ during sampling phase
Effect of Op-Amp

- Limited Gain
- Limited Settling
 - Linear settling
 - Nonlinear settling
- Non-Linearity
 - Variable gain
 - Slewing
 - Switched
- Noise
Limited Gain of op-amp

\[H(z) = \frac{V_o(n)}{V_i(n)} = \frac{C_1}{C_2} \left(1 - \frac{1}{1 - \frac{C_1}{A C_2}}\right) \left(1 - \varepsilon z^{-1}\right) \]

\[1 - \varepsilon = \frac{1}{1 + \frac{A}{C_1}} \]

\[\lambda = \frac{1}{A} \left(1 + \frac{C_1}{C_2}\right) \]

\[\text{Gain} = \frac{C_1}{C_2} \left(1 + \frac{1}{A} \frac{C_1 + C_2}{C_2}\right) \]

- SC Integrator: Convert to low-pass filter
- Sample and hold: Gain error
Linear & Nonlinear Settling

- Linear Settling: Caused gain error
- Nonlinear Settling: Input-dependent response → harmonic distortion
 - High-Slew-Rate op-amp required!

\[
H(z) = \frac{V_o(n)}{V_i(n)} = \frac{C_1}{C_2} \left(1 - e^{-\frac{T}{\tau}} \right) \frac{z^{-1}}{1 - z^{-1}}
\]
Linear Settling: Feedback Factor

- Larger gain \Rightarrow Larger C_1/C_2 \Rightarrow Slower settling
- Large input parasitic C_P \Rightarrow Slow settling

\[\tau = \frac{1}{2\pi f_T} \frac{C_1 + C_2 + C_P}{C_2} \]
Op-Amp Noise

- Noise:
- KT/C Noise
- Op-Amp noise