Prototyping and Emulation

Siamak Mohammadi
University of Tehran

Overview

- Introduction
- Prototyping and Emulation Techniques
- Prototyping and Emulation Environment
- Ref: Chapter 3 of HW/SW Codesign

Introduction

- Issues:
 - Increasing complexity of ASICs
 - Errors of Specification, design and implementation
- Need for validation methods and tools for “first-time-right-silicon”
 - High level abstraction specification and automatic synthesis
 - Simulation
 - Formal verification
 - Prototyping and emulation

High Level Synthesis Advantages

- High level synthesis is very important for HW/SW Codesign
- Investigating different HW partitions must be done as fast as SW compilation into machine code
 - High level synthesis is therefore the enabling technology for HW/SW Codesign
- High level of abstraction made possible → shorter formal specification time
- Supports investigation of many different design alternatives → higher quality designs
Simulation?
- Simulation is the standard and most common way of validating designs
 - But it could be very time consuming and slow requiring an explicit testbench
- Development of new systems requires simulation of both HW and SW and of peripheral devices
 - Difficult to integrate interface components
 - Slow cycle-based simulation compared to real-time execution
- Formal verification is an alternative but is limited in many ways
 - High complexity
 - Not suitable for time-related constraints

Prototyping and Emulation?
- Two problems for validation:
 - Appropriate means for HW/SW validation needed
 - These means must be combined for integrated system validation
- Software validation methods are well-known
- More efforts on HW validation methods
- For HW/SW codesign:
 - Low-level validation not useful
 - Like writing C++ code and debugging the generated assembly code
 - HW/SW implies high-level synthesis for HW parts

Prototyping and Emulation?
- Great advantage of P&E is higher speed
 - Only 100 times slower than real time
 - Easier integration of the environment
- Main disadvantage of emulation is that timing errors are hard or impossible to detect
 - Slow compilation once the circuit changes
 - High expense
 - Mostly serves as functional testing

P & E Techniques
- HDL-ICE System allows relating the probed signals to a register-transfer specification
 - Quickturn
- Cycle-based emulation of an RT-level design
 - Synopsys: Arkos system
 - Quickturn: Cobalt system
- Classical gate level emulation techniques based on FPGA
 - Mentor
- Special user programmable switches for interconnect
P & E Techniques
- Specially developed VLSI custom switch circuits
- Processor based emulator with an instruction set whose instructions are optimized for execution of logic operators
 - Circuit design is translated into Boolean equations and compiled into machine code for processors

P & E Environments
- Many approaches for prototyping of hardware but not enough for embedded systems
 - Difficult for the emulator’s synthesis SW to route buses introduced by the integration of µP
 - Hardware partitioning too inefficient leading to inadequate emulator’s HW resource utilization
 - Debugging facilities not sufficient
- Recent FPGAs with soft CPUs permits better emulation of HW/SW codesign

Principle of Emulation
- Logic design is mapped on an emulation board with multiple FPGAs
- Different interconnection schemes exist
 - Programmable gate arrays for interconnection structure
 - Special interconnection switches
 - Custom interconnect chips

Prototyping and Emulation
What is the distinction between P & E?
- The dividing line is blurred
- Prototyping:
 - Refers to a special architecture cut to fit a specific application
 - Often FPGA-based
 - Achieves higher clock rate due to specific cutting
 - Best elements selected for µcontroller, RAMs, special peripherals
 - New expenditure for the development of such a special prototype occurs for every new prototype
P & E Systems

- Some systems provide a compromise solution between general purpose emulation systems and special prototypes
 - Use hardwired regular interconnection scheme
 - Fewer signals routed through programmable devices
 - Better performance
 - Bus module provided for interconnecting modules
 - Debugger with tracing signals at run time
 - Configure FPGA at run time without affecting other parts of the architecture
 - OS with mini Kernel to run software

Future Developments in P & E

- Design synthesis from higher level of abstractions are enabled due to advances in design automation
- Interactive debugging becomes problematic
 - Requires mapping between the description and the emulation environment to reconstruct the transformations implemented by synthesis system
 - SLE: source level emulation: closes gap between description and hardware emulation
 - Retain relation between hardware elements and the source program (e.g. VHDL)

Steps in High Level Synthesis

1. Algorithm
2. Dataflowgraph
3. DFG annotated with a set of HW-component types
4. Operations mapped to a HW components type and a time slot
5. Structural circuit comprising HW-component, regs, muxes and a controller
6. Controller-Synthesis, Assignment