

ارائه یک روش موازی و آگاه از حافظه برای تسریع اجرای الگوریتم های بیوانفورماتیک	عنوان پاياننامه
Sequence alignment is the most widely used operation in bioinformatics. With	
the exponential growth of the biological sequence databases, searching a	
database to find the optimal alignment for a query sequence (that can be at the	
order of hundreds of millions of characters long) would require excessive	
processing power and memory bandwidth. Sequence alignment algorithms can	
potentially benefit from the processing power of massive parallel processors	
due their simple arithmetic operations, coupled with the inherent fine-grained	
and coarse-grained parallelism that they exhibit. However, the limited memory	
bandwidth in conventional computing systems prevents exploiting the	چکیدہ پایان نامہ
maximum achievable speedup. In this paper, we propose a processing-in-	
memory architecture as a viable solution for the excessive memory bandwidth	
demand of bioinformatics applications. The design is composed of a set of	
simple and light-weight processing elements, customized to the sequence	
alignment algorithm, integrated at the logic layer of an emerging vD DRAM	
architecture. Experimental results show that the proposed architecture results in	
up to $Y.$ £x speedup and £1% reduction in power consumption, compared to a	
processor-side parallel implementation.	
تطابق توالی پروتئین، شتاب دهنده سخت افزاری، پردازش در حافظه، تطابق ژن	كلمات كليدي
Sequence Alignment, Accelerator, Processing-in-memory	کلمات کلیدی کلمات کلیدی انگلیسی